

High-Performance Big Data

High-Performance and Scalable Support for Big Data Stacks with MPI

Talk at the 2024 Annual MVAPICH User Group (MUG) Conference

by

Aamir Shafi, Kinan Al Attar, Jinghan Yao

The Ohio State University

E-mail: shafi.16@osu.edu

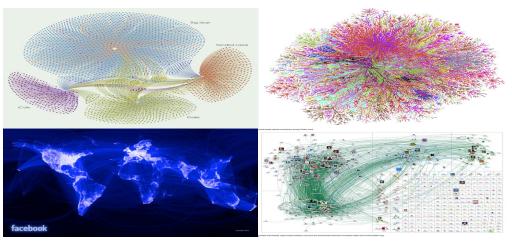
https://cse.osu.edu/people/shafi.16

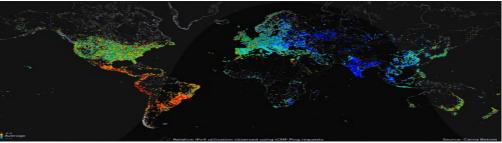
Presentation Outline

- Introduction to Big Data Analytics
- Overview, Design and Implementation
 - MPI4Spark
 - MPI4Dask
- Performance Evaluation
 - MPI4Spark
 - MPI4Dask
- Demo Hands-on Exercises with MPI4Dask
- Related Publications and Summary

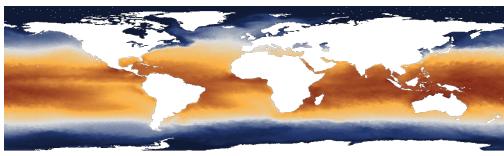
Introduction to Big Data Analytics

- Big Data has changed the way people understand and harness the power of data, both in the business and research domains
- Big Data has become one of the most important elements in business analytics
- Big Data and High Performance Computing (HPC) are converging to meet large scale data processing challenges
- Dask and Spark are two popular Big Data processing frameworks
- Sometimes also called Data Science



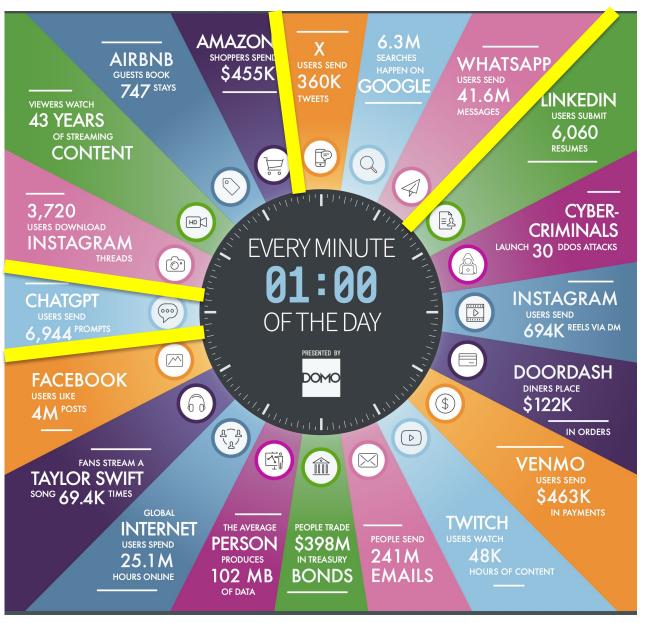


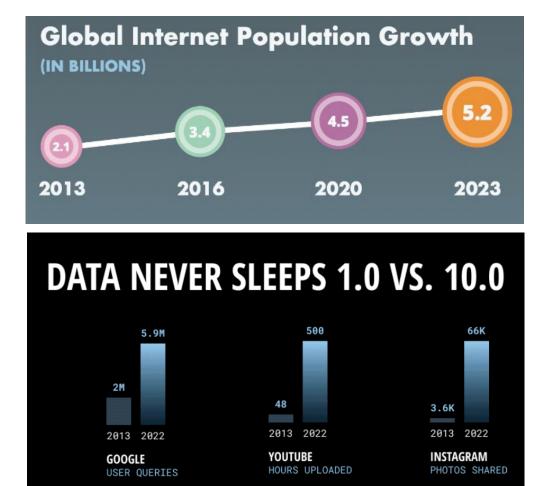
http://www.coolinfographics.com/blog/tag/data?currentPage=3



http://www.climatecentral.org/news/white-house-brings-together-bigdata-and-climate-change-17194

Big Velocity – How Much Data Is Generated Every Minute on the Internet?





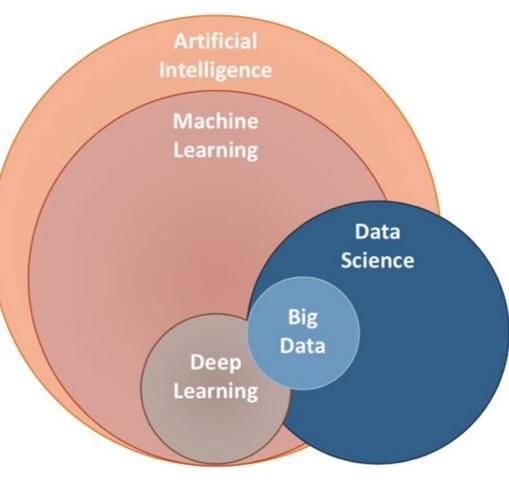
As of Nov 2023, the Internet reaches around 64.6% of the population and now represents

5.2 Billion People.

Courtesy: https://www.domo.com/blog/data-never-sleeps-11/

Intersection of Big Data and ML/DL

- Big Data, Machine and Deep learning are closely related and interconnected
- ML/DL workloads require collecting and processing of data
- HPC systems and distributed environments enable larger models and data to be trained
 - Growing quantities of training data requires Big Data solutions
- DL workloads pushing beyond traditional NLP and computer vision applications
 - Moving toward real-time analysis of streaming data



Big Data-ML/DL Venn Diagram

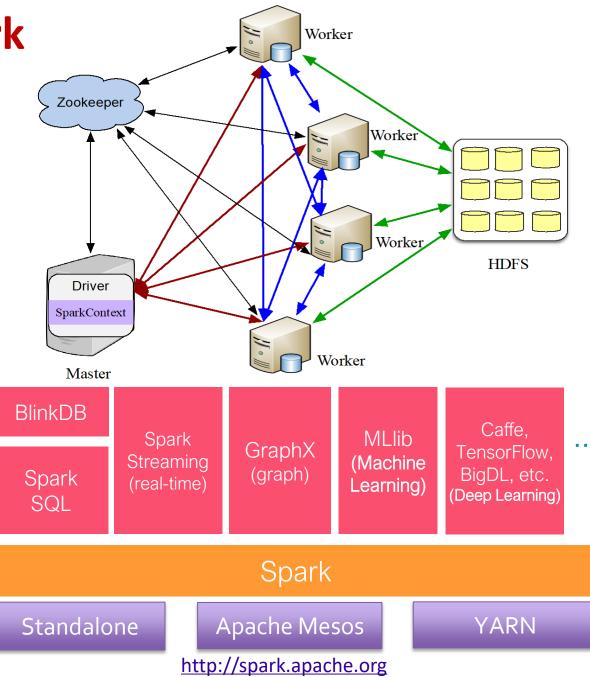
Courtesy: Thakur, N. (2023, February 25). The differences between Data Science, Artificial Intelligence, Machine Learning, and Deep Learning. Medium. Retrieved April 21, 2023, from https://ai.plainenglish.io/data-science-vs-artificial-intelligence-vs-machine-learning-vs-deep-learning-50d3718d51e5

Presentation Outline

- Introduction to Big Data Analytics
- Overview, Design and Implementation
 - MPI4Spark
 - MPI4Dask
- Performance Evaluation
 - MPI4Spark
 - MPI4Dask
- Demo Hands-on Exercises with MPI4Dask
- Related Publications and Summary

The Apache Spark Framework

- An in-memory data-processing framework
 - Iterative machine learning jobs
 - Interactive data analytics
 - Scala based Implementation
 - Standalone, YARN, Mesos
- A unified engine to support Batch, Streaming, SQL, Graph, ML/DL workloads
- Scalable and communication intensive
 - Wide dependencies between Resilient Distributed Datasets (RDDs)
 - MapReduce-like shuffle operations to repartition RDDs
 - Sockets based communication



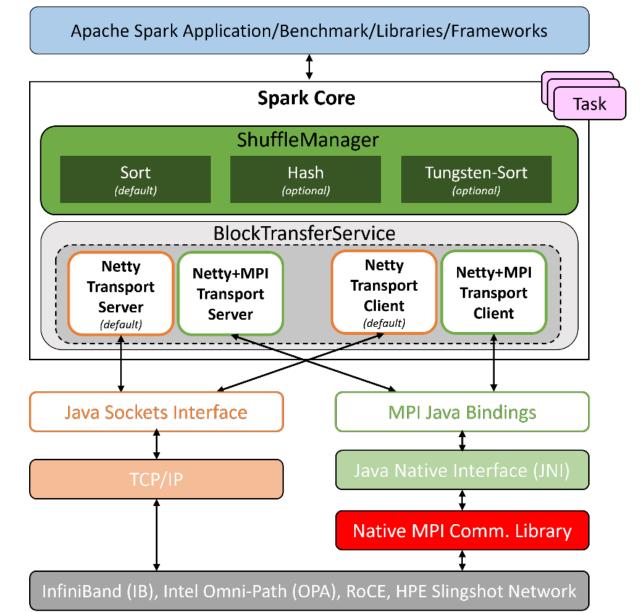
Network Based Computing Laboratory

MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

MUG 2023

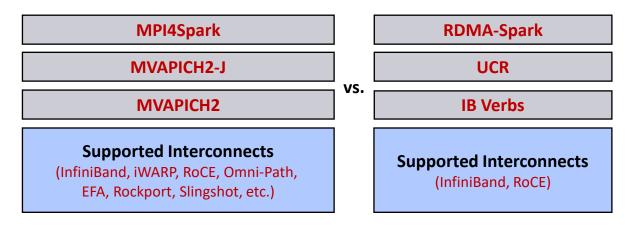
- The main motivation of this work is to utilize the communication functionality provided by MVAPICH2 in the Apache Spark framework
 - MPI4Spark relies on Java bindings of the MVAPICH2 library
- Spark's default Shuffle Manager relies on Netty for communication:
 - Netty is a Java New I/O (NIO)
 client/server framework for event-

based networking applications

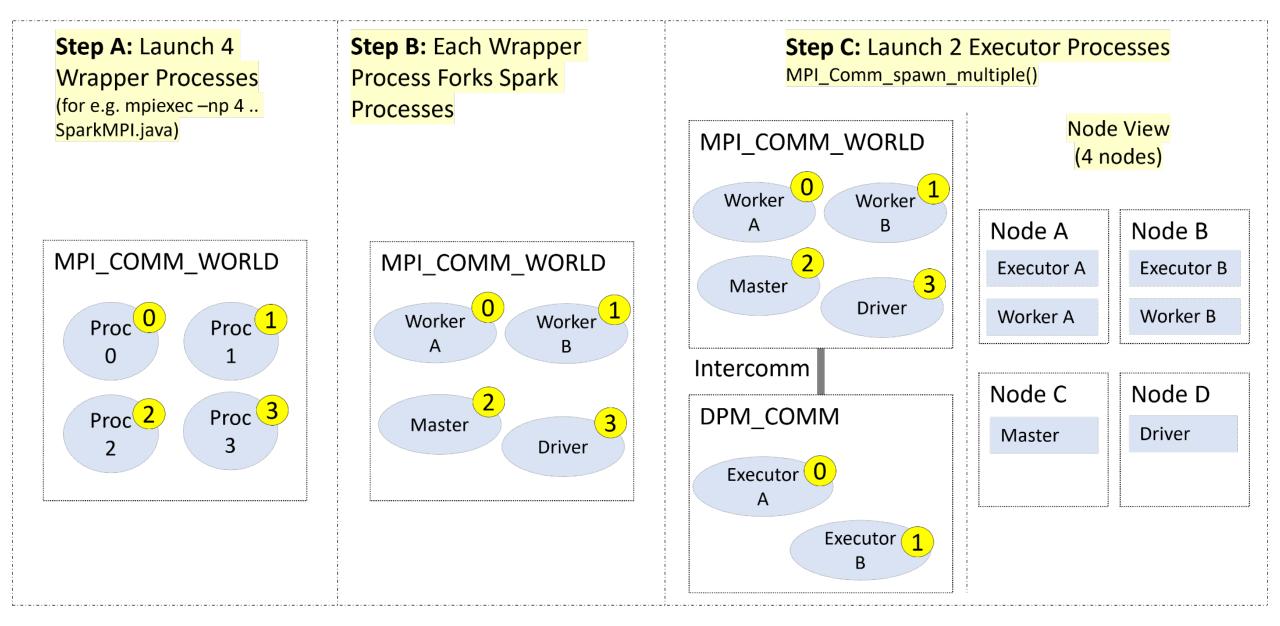


MPI4Spark Interconnect Support

- The current approach is different from its predecessor design, RDMA-Spark (<u>http://hibd.cse.ohio-state.edu</u>)
 - RDMA-Spark supports only InfiniBand and RoCE
 - Requires new designs for new interconnect
- MPI4Spark supports multiple interconnects/systems through a common MPI library
 - Such as InfiniBand (IB), Intel Omni-Path (OPA), HPE Slingshot, RoCE, and others
 - No need to re-design the stack for a new interconnect as long as the MPI library supports it



Launching Spark using MPI with Dynamic Process Management



Network Based Computing Laboratory

MPI4Spark Release (v0.3)

- MPI4Spark 0.3 release adds support for the YARN cluster manager:
 - Can be downloaded from http://hibd.cse.ohio-state.edu
- Features:
 - Based on Apache Spark 3.3.0
 - Support for YARN cluster manager
 - Compliant with user-level Apache Spark APIs and packages
 - High performance design that utilizes MPI-based communication
 - Utilizes MPI point-to-point operations
 - (NEW) Enhanced MPI Dynamic Process Management (DPM) logic for launching executor processes for the standalone cluster manager
 - (NEW) Relies on Multiple-Program-Multiple-Data (MPMD) launcher mode for the YARN and the Standalone cluster managers
 - (NEW) Supports MVAPICH versions 2.3.7 and 4.0
 - Built on top of the MVAPICH2-J Java bindings for MVAPICH2 family of MPI libraries
 - Tested with
 - (NEW) OSU HiBD-Benchmarks, GroupBy and SortBy
 - (NEW) Intel HiBench Suite, Micro Benchmarks, Machine Learning and Graph Workloads
 - Mellanox InfiniBand adapters (EDR and HDR 100G and 200G)
 - HPC systems with Intel OPA interconnects
 - Various multi-core platforms

Presentation Outline

- Introduction to Big Data Analytics
- Overview, Design and Implementation
 - MPI4Spark
 - MPI4Dask
- Performance Evaluation
 - MPI4Spark
 - MPI4Dask
- Demo Hands-on Exercises with MPI4Dask
- Related Publications and Summary

Introduction to Dask

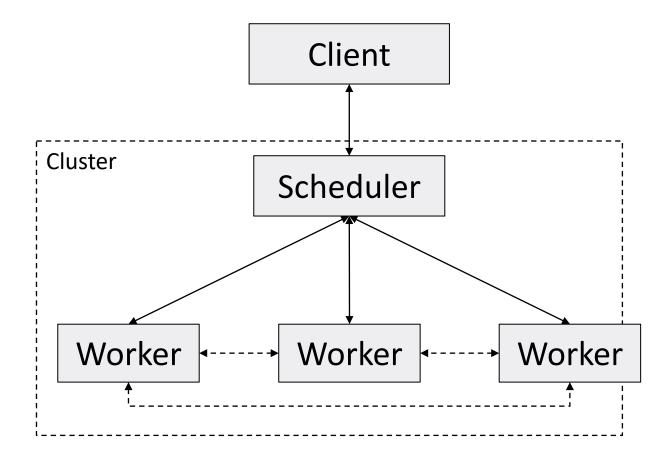
- Dask is a popular task-based distributed computing framework:
 - Scales Python applications from laptops to high-end systems
 - Builds a task-graph that is executed lazily on parallel hardware
 - Natively extends popular data processing libraries like numPy, Pandas
- Dask Distributed library supports parallel and distributed execution:
 - Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent operations called *coroutines*:
 - These are defined using async and invoked using await
 - Dask Distributed library originally had two communication backends:
 - TCP: Tornado-based
 - UCX: Built using a Cython wrapper called UCX-Py

MPI4Dask: MPI backend for Dask

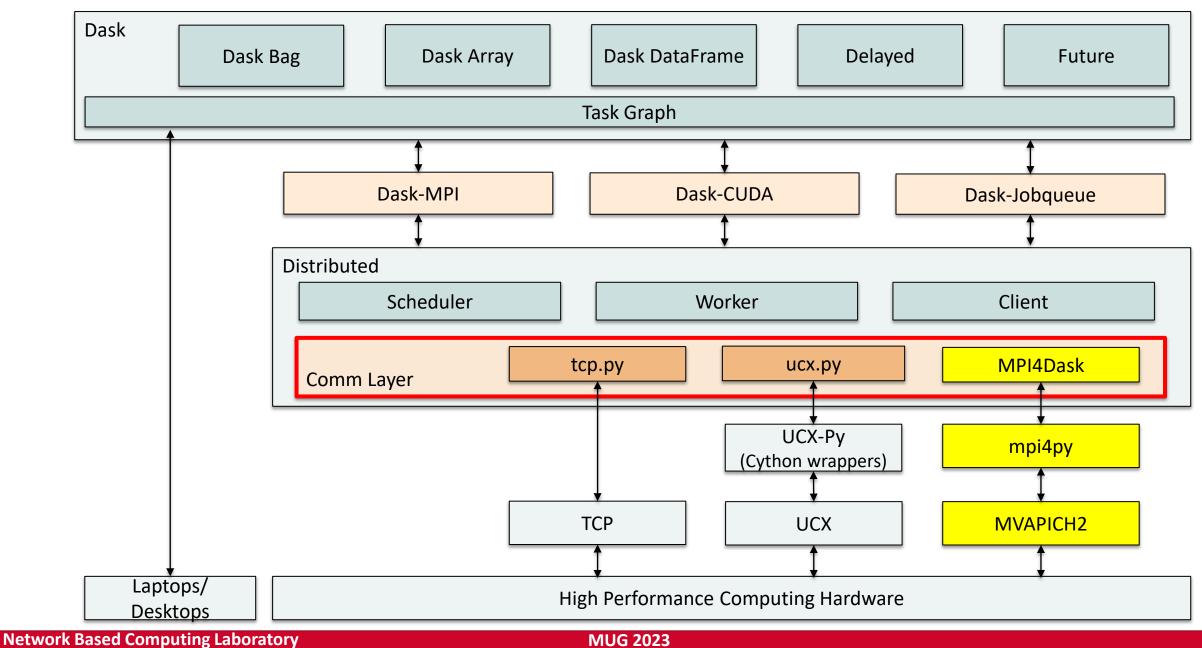
- Dask is a popular task-based distributed computing framework:
 - Scales Python applications from laptops to high-end systems
 - Builds a task-graph that is executed lazily on parallel hardware
- Dask Distributed library historically had two communication backends:
 - TCP: Tornado-based
 - UCX: Built using a GPU-aware Cython wrapper called UCX-Py
- Designed and implemented MPI4Dask communication device:
 - MPI-based backend for Dask
 - Implemented using mpi4py (Cython wrappers) and MVAPICH2
 - Uses Dask-MPI to bootstrap execution of Dask programs

Dask Distributed Execution Model

- Key characteristics:
 - 1. Scalability
 - 2. Elasticity
 - 3. Support for coroutines
 - 4. Serialization/De-serialization to data to/from GPU memory

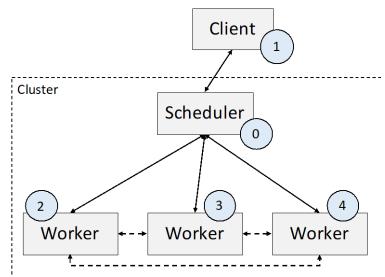


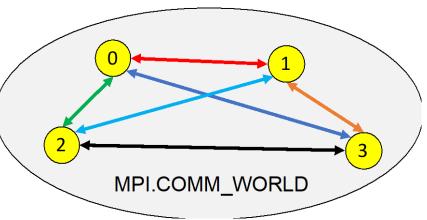
MPI4Dask in the Dask Architecture



MPI4Dask: Bootstrapping and Dynamic Connectivity

- Several ways to start Dask programs:
 - Manual
 - Utility classes:
 - LocalCUDACluster, SLURMCluster, SGECluster, PBCCluster, and others
- MPI4Dask uses the Dask-MPI to bootstrap execution of Dask programs
- Dynamic connectivity is established using the asyncio package in MPI4Dask:
 - Scheduler and workers listen for incoming connections by calling asyncio.start_server()
 - Workers and client connect using asyncio.open_connection()





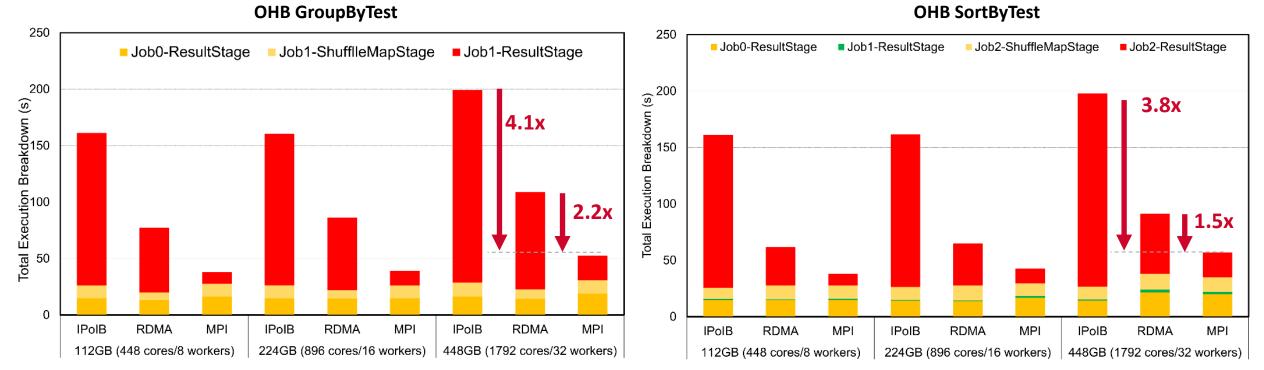
MPI4Dask Release

- MPI4Dask 0.3 was released in Feb '23 adding support for high-performance MPI communication to Dask:
 - Can be downloaded from: <u>http://hibd.cse.ohio-state.edu</u>
- Features:
 - (NEW) Based on Dask Distributed 2022.8.1
 - Compliant with user-level Dask APIs and packages
 - Support for MPI-based communication in Dask for cluster of GPUs
 - Implements point-to-point communication co-routines
 - Efficient chunking mechanism implemented for large messages
 - Built on top of mpi4py over the MVAPICH2-GDR library
 - Supports starting execution of Dask programs using Dask-MPI
 - Tested with
 - Mellanox InfiniBand adapters (FDR, EDR, and HDR)
 - (NEW) Various benchmarks used by the community (MatMul, Slicing, Sum Transpose, cuDF Merge, etc.)
 - (NEW) Various multi-core platforms
 - (NEW) NVIDIA V100 and A100 GPUs

Presentation Outline

- Introduction to Big Data Analytics
- Overview, Design and Implementation
 - MPI4Spark
 - MPI4Dask
- Performance Evaluation
 - MPI4Spark
 - MPI4Dask
- Demo Hands-on Exercises with MPI4Dask
- Related Publications and Summary

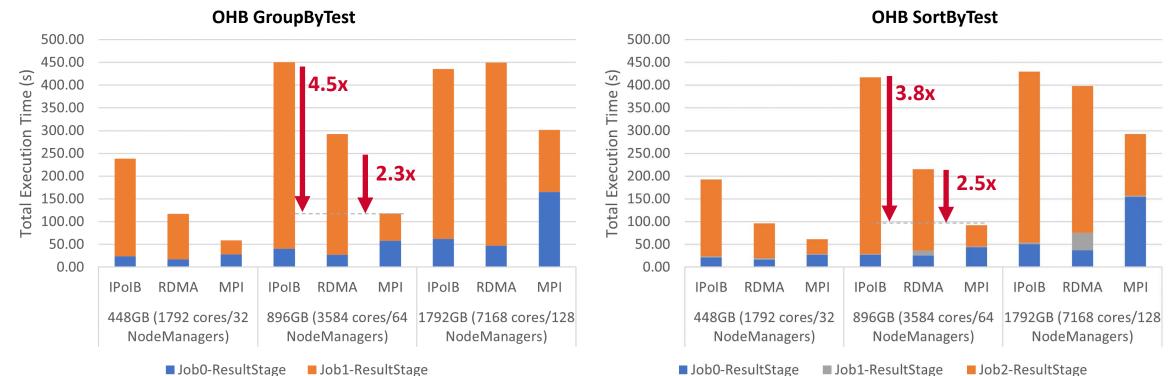
Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)



- The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera system using the Standalone cluster manager in Spark
- Speed-ups for the overall total execution time for 448GB with GroupByTest is 4.1x and 2.2x compared to IPoIB and RDMA, and for SortByTest the speed-ups are 3.8x and 1.5x, respectively
- Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPoIB and 5.6x compared to RDMA, while for SortByTest the speed-ups are 12.8x and 3.2x, respectively

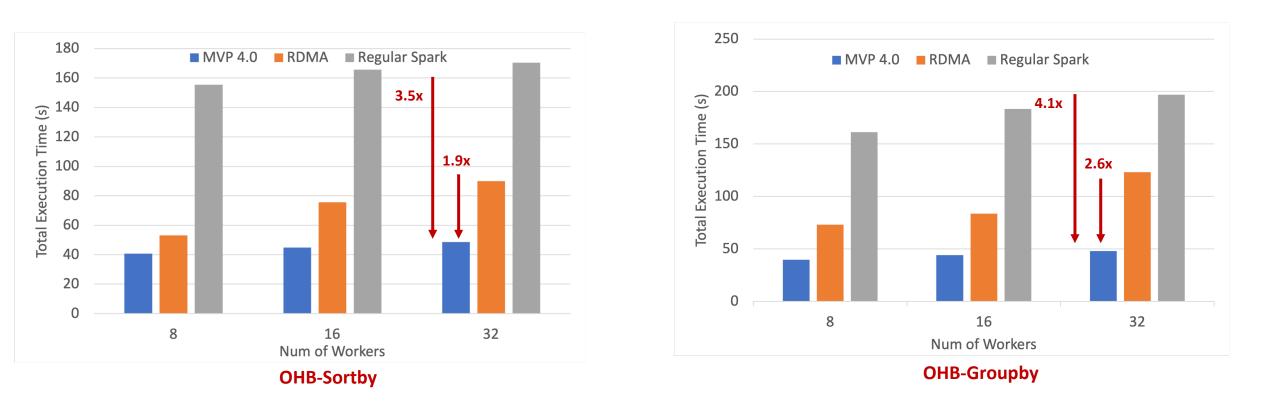
K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI, IEEE Cluster '22, Sep 2022.

Weak Scaling Evaluation with OHB (YARN)



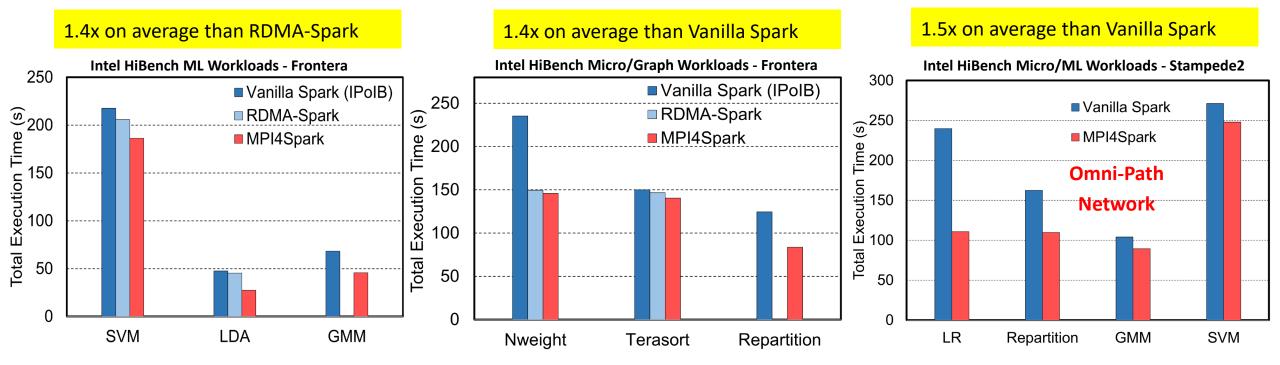
- The above are **weak-scaling** performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera system using the **YARN cluster manager** in Spark
- Speed-ups for the overall total execution time for SortByTest, 64 NodeManagers, are 4.5x and 2.3x compared to IPoIB and RDMA, and for GroupByTest, also 64 NodeManagers, the speed-ups are 3.8x and 2.5x, respectively
- Speed-ups for the shuffle read stage for 896GB with GroupByTest are 6.8x compared with IPoIB and 4.4x compared to RDMA, while for SortByTest the speed-ups are 8.4x and 3.9x, respectively

Performance Evaluation with MPI4Spark + MVP 4.0



- The following are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera system using MVAPICH version 4.0
- Speed-ups for the overall total execution time for 32 workers with GroupByTest is 4.1x and 2.6x compared to (regular) Spark and RDMA Spark, and for SortByTest the speed-ups are 3.5 and 1.9x, respectively.

Performance Evaluation with Intel HiBench Workloads



- This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems
- This illustrates the portability of MPI4Spark on different interconnects
- We see a speed-up for the LR machine learning workload on Stampede2 of about 2.2x
- Speed-ups for the LDA machine learning workload on Frontera are **1.7x** for both IPoIB and RDMA

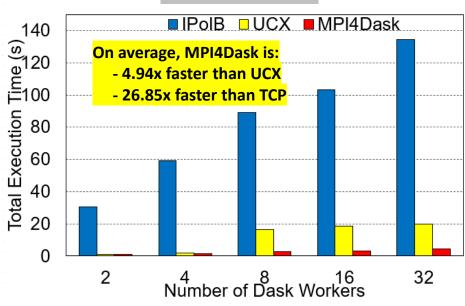
K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI, IEEE Cluster '22, Sep 2022.

Presentation Outline

- Introduction to Big Data Analytics
- Overview, Design and Implementation
 - MPI4Spark
 - MPI4Dask
- Performance Evaluation
 - MPI4Spark
 - MPI4Dask
- Demo Hands-on Exercises with MPI4Dask
- Related Publications and Summary

cuDF Merge Benchmark on the Cambridge Wilkes-3 System

- GPU-based Operation: *ddf*1.*merge*(*ddf*2), using persist
 - Merge two GPU data frames, each with length of 32*1e8
 - Compute() will gather the data from all worker nodes to the client node, and make a copy on the host memory.
 - Persist() will leave the data on its current nodes without any gathering

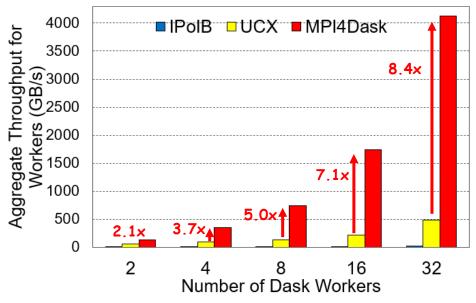


Execution Time

Wilke3 GPU System:

- 80 nodes
- 2x AMD EPYC 7763 64-core Processors
- 1000 GiB RAM
- Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB

Aggregated Throughput

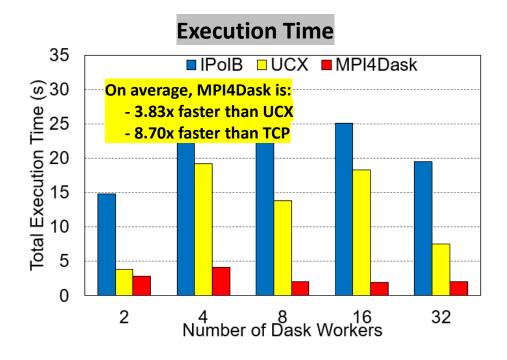


MPI4Dask 0.3, Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-3.0, UCX v1.13.1, UCX-py 0.27.00

MUG 2023

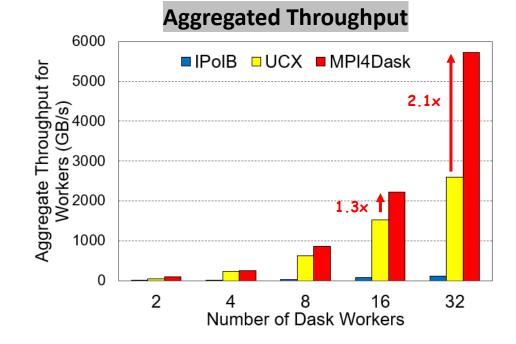
cupy GEMM Benchmark on the Cambridge Wilkes-3 System

- GPU-based Operation: x.dot(y), using persist
 - Arrays are distributed on multiple GPUs
 - Compute() will gather the data from all worker nodes to the client node, and make a copy on the host memory.
 - Persist() will leave the data on its current nodes without any gathering



Wilke3 GPU System:

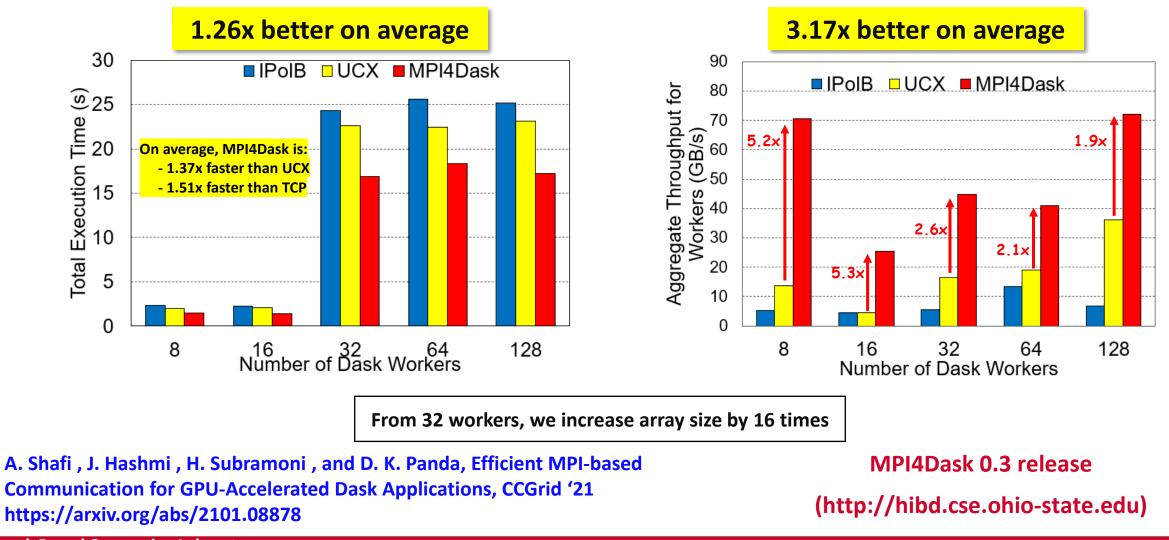
- 80 nodes
- 2x AMD EPYC 7763 64-core Processors
- 1000 GiB RAM
- Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB



MPI4Dask 0.3, Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-3.0, UCX v1.13.1, UCX-py 0.27.00

MUG 2023

NumPy Array Slicing Benchmark on TACC Frontera CPU System



Network Based Computing Laboratory

MUG 2023

Presentation Outline

- Introduction to Big Data Analytics
- Overview, Design and Implementation
 - MPI4Spark
 - MPI4Dask
- Performance Evaluation
 - MPI4Spark
 - MPI4Dask
- Demo Hands-on Exercises with MPI4Dask
- Related Publications and Summary

Lab 2 – Hands-on Lab with MPI4Dask

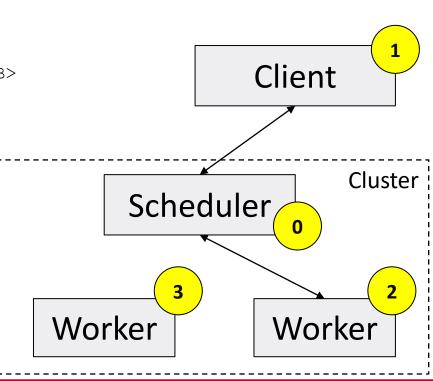
- Objectives
 - How to run parallel and distributed data science applications using Dask on HPC systems
 - How to use multi-node GPUs for Dask-based applications
- Tasks
 - Task 1: Sum of CuPy Array and its Transpose
 - Task 2: Cupy Matrix Multiplication
 - Task 3: Cupy Array Clicing

Task 1a: Sum of CuPy Array and its Transpose (GPU-based)

- Run the benchmark with a TCP communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task1
- \$ sh run_task1.sh tcp
- Expected output:

<Client: 'tcp://10.3.1.2:44230' processes=2 threads=16, memory=143.58 GiB>
Time for iteration 0 : 3.9933362007141113
Time for iteration 1 : 1.7020411491394043
Time for iteration 2 : 1.6842925548553467
Time for iteration 3 : 1.6863949298858643
Time for iteration 4 : 1.577439546585083
Time for iteration 5 : 1.6131360530853271

Median Time: 1.68s

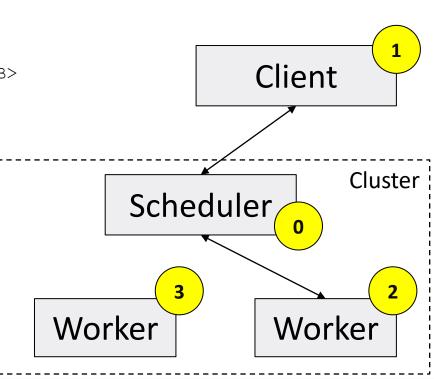


Task 1b: Sum of CuPy Array and its Transpose (GPU-based)

- Run the benchmark with a UCX communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task1
- \$ sh run_task1.sh ucx
- Expected output:

<Client: 'ucx://10.3.1.2:37564' processes=2 threads=16, memory=143.58 GiB>
Time for iteration 0 : 2.47611141204834
Time for iteration 1 : 1.1098558902740479
Time for iteration 2 : 1.288067102432251
Time for iteration 3 : 1.0797405242919922
Time for iteration 4 : 1.0817945003509521
Time for iteration 5 : 1.069718360900879

Median Time: 1.09s



Task 1c: Sum of CuPy Array and its Transpose (GPU-based)

- Run the benchmark again with the new MPI communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task1
- \$ sh run_task1.sh mpi
- Expected output:

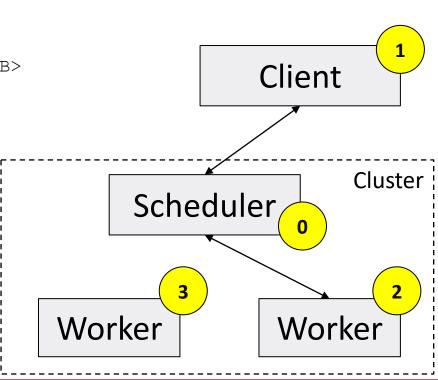
Median Time: 0.38s

Task 2a: Cupy Matrix Multiplication (GPU-based)

- Run the benchmark with a TCP communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task2
- \$ sh run_task2.sh tcp
- Expected output:

<Client: 'tcp://10.3.1.6:33132' processes=2 threads=16, memory=143.58 GiB>
Time for iteration 0 : 5.673777103424072
Time for iteration 1 : 3.202324867248535
Time for iteration 2 : 3.323018789291382
Time for iteration 3 : 3.1695098876953125
Time for iteration 4 : 3.1934258937835693
Time for iteration 5 : 3.257124423980713

Median Time: 3.22s

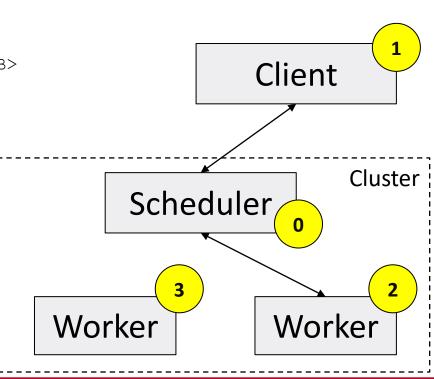


Task 2b: Cupy Matrix Multiplication (GPU-based)

- Run the benchmark with a UCX communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task2
- \$ sh run_task2.sh ucx
- Expected output:

<Client: 'ucx://10.3.1.2:55172' processes=2 threads=16, memory=143.58 GiB>
Time for iteration 0 : 2.83543062210083
Time for iteration 1 : 2.19091534614563
Time for iteration 2 : 2.189948558807373
Time for iteration 3 : 2.125943660736084
Time for iteration 4 : 2.200505495071411
Time for iteration 5 : 2.326890230178833

Median Time: 2.19s



Task 2c: Cupy Matrix Multiplication (GPU-based)

- Run the benchmark again with the new MPI communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task2
- \$ sh run_task2.sh mpi
- Expected output:

<Client: 'mpi://10.3.1.6:34910' processes=2 threads=16, memory=143.58 GiB>
Time for iteration 0 : 2.369664192199707
Time for iteration 1 : 1.2211949825286865
Time for iteration 2 : 1.2420144081115723
Time for iteration 3 : 1.2281405925750732
Time for iteration 4 : 1.2588093280792236
Time for iteration 5 : 1.2160212993621826
MVAPICH2: 2.5

MVAPICH2: 2.5x faster than TCP

1.7x faster than UCX

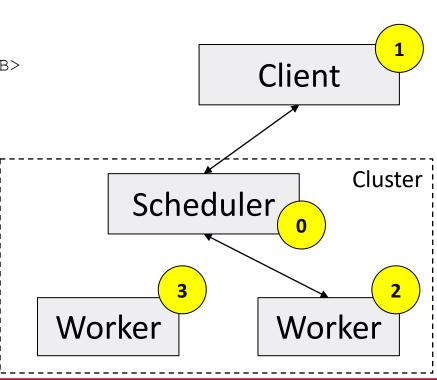
Median Time: 1.25s

Task 3a: Cupy Array Slicing (GPU-based)

- Run the benchmark with a TCP communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task3
- \$ sh run_task3.sh tcp
- Expected output:

<Client: 'tcp://10.3.1.6:40202' processes=2 threads=16, memory=143.58 GiB>
Time for iteration 0 : 3.7195968627929688
Time for iteration 1 : 1.3150527477264404
Time for iteration 2 : 1.2060997486114502
Time for iteration 3 : 1.2438180446624756
Time for iteration 4 : 1.2373754978179932
Time for iteration 5 : 1.164992332458496

Median Time: 1.24s

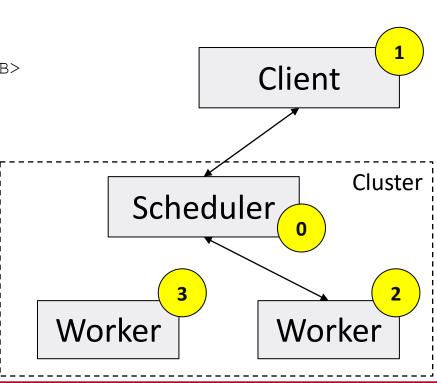


Task 3b: Cupy Array Slicing (GPU-based)

- Run the benchmark with a UCX communicator
- \$ salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial
- \$ cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task3
- \$ sh run_task3.sh ucx
- Expected output:

<Client: 'ucx://10.3.1.2:56148' processes=2 threads=16, memory=143.58 GiB>
Time for iteration 0 : 2.9743316173553467
Time for iteration 1 : 0.9042410850524902
Time for iteration 2 : 0.8928432464599609
Time for iteration 3 : 0.8946189880371094
Time for iteration 4 : 0.8854148387908936
Time for iteration 5 : 0.8948419094085693

Median Time: 0.89s



Task 3c: Cupy Array Slicing (GPU-based)

- Run the benchmark again with the new MPI communicator
- salloc --nodes=4 --time=3:00 --reservation=hibd-tutorial S
- Ş cd /opt/tutorials/hibd/mpi4dask-usrs/\$USER/labs/task3
- \$ sh run task3.sh mpi
- Expected output:

<Client: 'mpi://10.3.1.6:30125' processes=2 threads=16, memory=143.58 GiB> Time for iteration 0 : 3.952059268951416 Time for iteration 1 : 0.39922380447387695 Time for iteration 2 : 1.061549425125122 Time for iteration 3 : 0.3944559097290039 Time for iteration 4 : 0.3925657272338867 Time for iteration 5 : 0.41716957092285156

MVAPICH2: 3.1x faster than TCP

2.2x faster than UCX

Median Time: 0.40s

Presentation Outline

- Introduction to Big Data Analytics
- Overview, Design and Implementation
 - MPI4Spark
 - MPI4Dask
- Performance Evaluation
 - MPI4Spark
 - MPI4Dask
- Demo Hands-on Exercises with MPI4Dask
- Related Publications and Summary

Related Publications

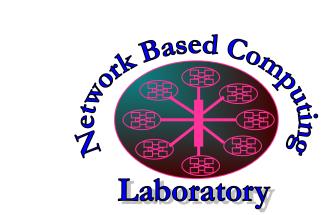
- Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda IEEE Cluster '22, Sep 2022.
- Towards Java-based HPC using the MVAPICH2 Library: Early Experiences K. Al Attar, A. Shafi, H. Subramoni, D. Panda HIPS '22 (IPDPSW), May 2022.
- Efficient MPI-based Communication for GPU-Accelerated Dask Applications A. Shafi, J. Hashmi, H. Subramoni, D. Panda, The 21st IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, May 2021. <u>https://arxiv.org/abs/2101.08878</u>
- Blink: Towards Efficient RDMA-based Communication Coroutines for Parallel Python Applications A. Shafi, J. Hashmi, H. Subramoni, D. Panda, 27th IEEE International Conference on High Performance Computing, Data, and Analytics, Dec 2020.

Summary

- Apache Spark and Dask are two popular Big Data processing frameworks
- There is existing support for parallel and distributed on HPC systems:
 - One bottleneck is the lack of support for low-latency and high-bandwidth interconnects
- This talk presented latest developments in the MPI4Dask (MPI-based Dask ecosystem) and MPI4Spark (MPI-based Spark ecosystem)
- Provided an overview of issues, challenges, and opportunities for designing efficient communication runtimes
 - Efficient, scalable, and hierarchical designs are crucial for Big Data/Data Science frameworks
 - Co-design of communication runtimes and BigData/Data Science frameworks will be essential

Thank You!

{shafi.16}@osu.edu



Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

MPI, PGAS and Hybrid MPI+PGAS Library

The MVAPICH Project http://mvapich.cse.ohio-state.edu/

High-Performance Deep Learning

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/